
Application Note
AN-B13-XXIII-01

SYNENTEC GmbH  www.synentec.com 1

Label-Free High-Throughput Cell Viability Analysis 
Using Advanced Machine Learning Algorithms

Willms A1, Davara J1, da Graca M1, Geisen R1, Werdelmann B1, Sebens S2 & Pirsch M1

1SYNENTEC GmbH Elmshorn, Germany
2CAU + UKSH Kiel, Germany

ABSTRACT 

Cell viability assays are essential tools in various research fields, like drug 
discovery, cancer research, bioprocessing, or cell line development. Commonly, 
cells are stained with a dye to distinguish between living and dead cells. 
Dyes not only complicate these assays but also may introduce challenges like  
interference with test compounds, handling and disposing of toxic substances, 
and the generation of single-use plastic waste. Thus, we explored a solution 
for a label-free, high-throughput viability assay. To do so, we used algorithms 
of machine learning/artificial intelligence (AI). Initially, we trained a machine-
learning model using only brightfield images. To differentiate between living 
and dead cells fluorescence images were employed as an auxiliary tool to 
classify the cells as viable or dead. Cells were labeled and assigned into the 
two classes using our AI-STUDIO+ software. Subsequently, we validated the 
accuracy of the AI model by comparing its results with those obtained from 
classical image processing of Hoechst 33342/Calcein-AM/Propidium Iodide and 
Trypan Blue stainings. The Trypan Blue viability assay is widely used during 
cell culture routine in many laboratories. Both assays showed similar results 
regarding Viability and Cell Count in comparison to AI analysis. Moreover, the 
standard deviation was lower for the AI-analyzed data than for the classical Trypan Blue assay. Thus, we developed an AI-
driven solution to assess the cell viability of suspension cells using brightfield images of unlabeled cells suitable for high-
throughput purposes. 
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Benefits of SYNENTEC’s AI-based viability assay:

•	 Imaging and image analysis in one software platform

•	 Label-free, non-invasive, no interference with test compounds

•	 Safe, rapid, reliable, efficient, and time-and cost-effective

•	 Suitable for high throughput
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Cell Culture and Staining
•	 CHO-K1 (adherent Chinease hamster ovary cells); HEK293T 

(adherent human embryonic kidney cells)
•	 Ham’s F12 medium or DMEM supplemented with 10% (v/v) 

FCS, 1% (v/v) L-Glutamine, 1% (v/v) Sodium Pyruvate
•	 Trypsin 0.05%/EDTA 0.02% in PBS, e.g. Gibco
•	 Trypan Blue (0.4%), Gibco # 15250061
•	 Calcein-AM, Biolegend # 425201
•	 Hoechst 33342, Invitrogen # H1399
•	 Propidium Iodide, Biolegend # 421301
•	 96 well plate, Starlab, CytoOne® # CC76827596

Imaging and Analysis
•	 SYNENTEC’s imaging device (here CELLAVISTA® 4K)
•	 SYNENTEC’s YT-SOFTWARE®

•	 SYNENTEC’s AI-SUITE®

Fig. 1. PLATE LAYOUT

Different cell densities of viable and serum-starved HEK293T cells 
were seeded in a 96 well plate. 
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Cell viability assays are pivotal in life sciences, enabling the 
evaluation of cell vitality to determine the toxicity of components 
or estimate cell health during the cell culture routine. Commonly 
used methods are dye exclusion assays, in which cells are labeled 
with either a brightfield or fluorescent dye to distinguish between 
live and dead cells, and a detection system quantifies the number 
of cells falling into each category, in addition to the total cell count. 
Ultimately, cell viability is calculated as the percentage of viable 
cells in the sample. The underlying principle of dye exclusion assays 
is that living cells possess intact cell membranes that prevent the 
penetration of the stain, whereas dead or dying cells lack such 
barriers and the dye can penetrate damaged membranes. 
One of the most common standard techniques used in academic 
research and industry to access viability is Trypan Blue (TB) staining 
[1]. The cell suspension is mixed with the TB dye and is visually 
examined under a light microscope to determine whether the cells 
include or exclude the stain. A viable cell is characterized by a clear 
cytoplasm, whereas a nonviable cell exhibits a blue cytoplasm as 
TB has entered the dead cell. Although the assay is simple, well-
established, and the gold standard for the assessment of cell viability 
in many laboratories, TB dye has limitations and drawbacks. On the 
one hand, TB becomes toxic to cells after a short exposure time. This 
presents the risk of miscounting viable cells because they die over 
time. On the other hand, TB staining was shown to overestimate 

cell viability in samples that are below 80% viable [2]–[4]. Moreover, 
since TB binds to proteins, it might also interfere with proteins in 
the serum of the medium, therefore the sample should be prepared 
in PBS, which adds a preparation step. In addition, the dye might 
also interfere with other test components, for example regarding 
drug screenings [4]. Concerning automation systems, stains add 
unwanted complexity to automated liquid handling processes. 
Despite that, the most challenging disadvantage might represent 
the toxicity of TB. According to the European Chemicals Agency 
(ECHA), TB may cause cancer, genetic defects, and may damage 
fertility or the unborn child [5]. This poses huge obstacles in terms 
of the proper disposal and handling of the toxic dye. Frequently, 
the cells stained with TB are categorized as genetically modified 
organisms (GMOs) that need to be autoclaved before disposal. 
Since it is not allowed to autoclave TB, the stained GMOs need 
to be incinerated at high temperatures. Thus, there is a need to 
explore an alternative method that overcomes these challenges, 
while being reliable, time- and cost-effective. Therefore, we 
aimed to develop a solution using brightfield images of unlabeled 
suspension cells to assess cell viability. To do so, we used algorithms 
of machine learning that were initially trained with brightfield 
images of labeled living and dead cells. The AI models learned from 
the input data to detect cells and assess their viability based on 
morphological differences. 

INTRODUCTION

MATERIAL
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Cell Culture
We routinely cultured Chinese ovary hamster (CHO-K1) cells in 
Ham’s F12 medium and human embryonic kidney (HEK293T) in 
DMEM medium under standardized cell culture conditions (37 °C, 
5% CO2, humidified atmosphere). Both media were supplemented 
with 10% (v/v) FCS, 1% (v/v) Sodium Pyruvate, and 1% (v/v) 
L-Glutamine. Cells were generally passaged at 70-80% confluence. 
To do so, cells were detached with trypsin and counted using 
SYNENTEC’s Trypan Blue application (see Trypan Blue application 
note for details). The appropriate cell number was calculated based 
on the viable cell density or depending on the assay, the cell density. 
 
Generation of Training and Validation Data
For AI viability training, a population of viable and dead cells was 
obtained by subjecting cells to a period of starvation, achieved by 
storing them in a 15 mL falcon tube with a limited amount of medium 
overnight. The viable cells were obtained from the standard cell 
culture by trypsinization. Various cell densities of viable or serum-
starved cells were pipetted in a 96 well plate each (200 µL/well, 
FIG. 1). A staining solution, comprising Hoechst 33342, Propidium 
Iodide, and Calcein-AM was prepared at a 20x concentration and 

added to the wells (10 µL, TAB. 1). The plates were then incubated 
for 15-30 min in a standard incubator (37 °C, 5% CO2, humidified 
atmosphere) and immediately imaged thereafter. 

Imaging and Image Analysis 
Imaging was performed using the 10x objective of CELLAVISTA® 
4K and the whole well was imaged. Regarding Live/Dead stainings 
the imaging settings are described in TAB. 2. Depending on the 
assay, image analysis was performed using the image analysis 
applications Trypan Blue, Virtual Cytoplasm (2F) or the AI-
SUITE® of YT-SOFTWARE®. 

Machine Learning
A state-of-the-art computer vision Deep Learning model, 
specifically an object detection model, was trained on the training 
data. Furthermore, the correct localization and classification of 
each detected cell was validated on the validation data, which 
was separated from the training data. This step ensured that the 
quality and accuracy of the model were assessed on unseen, high-
quality data. Thus, making the model more robust to changes and 
fluctuations in the real-world application.

Tab. 1: LIVE/DEAD STAINING

Dye Stock Concentration Dilution Final Concentration

Hoechst 33342 5 mg/mL 1:1,000 5 µg/mL

Propidium Iodide 0.5 mg/mL 1:1,000 5 µg/mL

Calcein-AM 1 mM 1:10,000 0.1 µM

Tab. 2: IMAGE SETTINGS FOR LIVE/DEAD STAININGS

Dye Excitation LED [nm] Dichro Emission [nm]

Hoechst 33342 UV (377/50) UV Blue (452/45)

Propidium Iodide Lime (562/40) Lime Lime (593-LP)

Calcein-AM Blue (475/28) Blue Green (530/43)

MATERIAL
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Data Generation for Machine Learning

The first step in the development process of an AI-driven solution 
for a viability assay was the generation of training data for 
machine learning. Therefore, we stained CHO-K1 or HEK293T cells 
having different viabilities with Hoechst 33342, Calcein-AM, and 
Propidium Iodide (PI) and imaged the cells with CELLAVISTA® 4K. 
Hoechst 33342 (not shown) stains the nuclei of each cell and was 

used for general cell identification. Calcein-AM is a non-fluorescent 
cell-permeant dye that is converted to a highly fluorescent form 
by intracellular esterases in live cells (FIG. 2A right, green cells). In 
contrast, PI can only penetrate cells with compromised membranes, 
such as dead or dying cells (FIG. 2A right, yellow cells). This Calcein-
AM/PI dual-staining method is a common technique in cell biology 
and fluorescence microscopy to distinguish live, dead, and apoptotic 

Fig. 2. COMPARISON OF AI VIABILITY AND LIVE/DEAD STAINING 

(A) Viable or serum-starved HEK293T cells were seeded in a 96 well plate, stained with Hoechst 33342, Calcein-AM, and Propidium Iodide (PI), and 
were imaged directly with CELLAVISTA® 4K. Brightfield images were analyzed by AI and fluorescence images utilizing the image analysis application 
Virtual Cytoplasm (2F). (B) Viability and (C) Cell Count results were plotted to compare both assays. Data from one representative experiment are 
presented.   
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RESULTS & DISCUSSION
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cells within a cell population. Based on this staining, the cells were 
labeled and assigned to the class living or dead using our in-house 
software AI-Studio+. Utilizing these data, Machine Learning models 
were trained and subsequently validated.

Live/Dead Staining versus AI Viability

In addition, we analyzed the Hoechst 33342/Calcein AM/PI staining 
with our classical image analysis application Virtual Cytoplasm 
(2F) of YT-SOFTWARE® and compared the results with the data 
obtained by the AI models (FIG. 2). We compared the AI viability 
results with the percentage of Calcein-AM positive/PI negative cells 
(FIG. 2B). Although both data sets exhibited variances, overall, their 
outcome was similar. Analogous results were observed overlaying 
the AI Cell Count and Nuclei Count of the Virtual Cytoplasm (2F) 
application (FIG. 2C). Altogether, Viability and Cell Count results 

from both, AI and classical image processing, lead to comparable 
results, pointing out that machine learning was successful.

Classical Trypan Blue Staining versus AI Viability

Following machine learning, we evaluated AI performance in the 
field during our routine cell culture procedures and compared the 
results with our classical Trypan Blue assay. We seeded different 
numbers of CHO-K1 cells in a 96 well plate and stained half of 
the cells with TB afterward. Cells were imaged with CELLAVISTA® 
4K and subsequently, the stained cells were analyzed using the 
image analysis application Trypan Blue of YT-SOFWARE®, while 
unstained cells were analyzed using the AI viability model. Notably, 
the data unveiled similar results in both Viability and Cell Count 
(FIG. 3, TAB. 3). Interestingly, the standard deviation was lower for 
the AI-analyzed data than for the classical TB assay (FIG. 3, TAB. 3).

Fig. 3. COMPARISON OF AI VIABILITY AND TRYPAN BLUE ASSAY

(A) CHO-K1 cells were seeded in a 96 well plate and half of the cells were stained with Trypan Blue. Cells were imaged with CELLAVISTA® 4K. Images 
of unstained cells were analyzed by AI and stained cells using Trypan Blue application. (A) Viability and (B) Cell Count data are presented as mean 
and standard deviation from one representative experiment performed in 16 technical replicates. 
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Tab. 3: RESULTS FROM AI AND TB ASSAYS

Sample Viability [%] Cell Count [#]

Artificial Intelligence Trypan Blue Artificial Intelligence Trypan Blue

1 89.94 ± 1.74 90.18 ± 2.33 3,974 ± 4.12% 4,131 ± 6.21%

2 89.48 ± 2.08 91.02 ± 3.13 7,809 ± 2.69% 7,769 ± 5.92%

3 87.87 ± 3.19 92.44 ± 3.25 15,830 ± 3.76% 15,664 ± 5.61%
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It’s elegantly simple: capture brightfield cell images with our 
automated imagers NYONE® or CELLAVISTA® and analyze them 
using our YT-SOFTWARE®, empowered by an integrated AI tool 
to predict cell viability. Making cell staining redundant, the assay 
is time- and cost-effective, while being safe, rapid, and reliable. 
Moreover, since our AI-based solution is non-invasive to the cells, 

the Viability and Cell Count of suspension cells can be monitored 
over time and the cells can be used in follow-up studies (FIG. 4). 
In times where the need to explore all possibilities for contributing 
to greater sustainability is inevitable, this assay has the potential 
to revolutionize cell culture, research, and clinical applications by 
avoiding the use of toxic substances and minimizing waste. 

Fig. 4. OVERVIEW OF DIFFERENT VIABILITY ASSAY PROCEDURES 

For classical cell counting and viability determination, cells are initially stained with Trypan Blue. In the traditional method, cells are placed in a 
hemocytometer and are manually counted under a conventional microscope (left). In our previous plate-based approach, cells are measured, and 
the cell count, and viability are calculated automatically (middle). With the use of AI, cell staining is not required, and samples are measured and 
evaluated automatically (right). 
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